A Potential Vorticity Tendency Diagnostic Approach for Tropical Cyclone Motion*

2000 ◽  
Vol 128 (6) ◽  
pp. 1899-1911 ◽  
Author(s):  
Liguang Wu ◽  
Bin Wang
2015 ◽  
Vol 73 (1) ◽  
pp. 319-330 ◽  
Author(s):  
Chun-Chieh Wu ◽  
Shun-Nan Wu ◽  
Ho-Hsuan Wei ◽  
Sergio F. Abarca

Abstract The purpose of this study is to analyze the role of diabatic heating in tropical cyclone ring structure evolution. A full-physics three-dimensional modeling framework is used to compare the results with two-dimensional modeling approaches and to point to limitations of the barotropic instability theory in predicting the storm vorticity structure configuration. A potential vorticity budget analysis reveals that diabatic heating is a leading-order term and that it is largely offset by potential vorticity advection. Sawyer–Eliassen integrations are used to diagnose the secondary circulation (and corresponding vorticity tendency) forced by prescribed heating. These integrations suggest that diabatic heating forces a secondary circulation (and associated vorticity tendency) that helps maintain the original ring structure in a feedback process. Sensitivity experiments of the Sawyer–Eliassen model reveal that the magnitude of the vorticity tendency is proportional to that of the prescribed heating, indicating that diabatic heating plays a critical role in adjusting and maintaining the eyewall ring.


2013 ◽  
Vol 70 (8) ◽  
pp. 2547-2565 ◽  
Author(s):  
Marie-Dominique Leroux ◽  
Matthieu Plu ◽  
David Barbary ◽  
Frank Roux ◽  
Philippe Arbogast

Abstract The rapid intensification of Tropical Cyclone (TC) Dora (2007, southwest Indian Ocean) under upper-level trough forcing is investigated. TC–trough interaction is simulated using a limited-area operational numerical weather prediction model. The interaction between the storm and the trough involves a coupled evolution of vertical wind shear and binary vortex interaction in the horizontal and vertical dimensions. The three-dimensional potential vorticity structure associated with the trough undergoes strong deformation as it approaches the storm. Potential vorticity (PV) is advected toward the tropical cyclone core over a thick layer from 200 to 500 hPa while the TC upper-level flow turns cyclonic from the continuous import of angular momentum. It is found that vortex intensification first occurs inside the eyewall and results from PV superposition in the thick aforementioned layer. The main pathway to further storm intensification is associated with secondary eyewall formation triggered by external forcing. Eddy angular momentum convergence and eddy PV fluxes are responsible for spinning up an outer eyewall over the entire troposphere, while spindown is observed within the primary eyewall. The 8-km-resolution model is able to reproduce the main features of the eyewall replacement cycle observed for TC Dora. The outer eyewall intensifies further through mean vertical advection under dynamically forced upward motion. The processes are illustrated and quantified using various diagnostics.


1999 ◽  
Vol 127 (1) ◽  
pp. 124-131 ◽  
Author(s):  
Lloyd J. Shapiro ◽  
James L. Franklin

2012 ◽  
Vol 140 (11) ◽  
pp. 3634-3652 ◽  
Author(s):  
Bryce Tyner ◽  
Anantha Aiyyer

Abstract The evolution of African easterly waves (AEWs) leading to tropical cyclones (TCs) in the Atlantic during 2000–08 is examined from isentropic potential vorticity (PV) and Lagrangian streamline perspectives. Tropical cyclone formation is commonly preceded by axisymmetrization of PV, scale contraction of the wave, and formation of a closed circulation within the wave. In these cases, PV associated with the synoptic-scale wave is irreversibly deformed and subsumed within the developing vortex. Less commonly, filamentation of the PV leads to separation and independent propagation of the wave and the TC vortex. In an example presented here, the remnant wave with a closed circulation persisted for several days after separation from the TC. A second TC did not result, consistent with several past studies that show that a midtropospheric closed gyre is not sufficient for TC genesis. Sometimes, an AEW and a weak TC remain coupled for a few days, followed by the dissipation of the TC and the continued propagation of the wave. Merger of tropical and extratropical PV anomalies is also often observed and likely helps maintain some waves. The results of this study are broadly consistent with recent Lagrangian analyses of AEW evolution during TC genesis.


2016 ◽  
Vol 73 (9) ◽  
pp. 3345-3370 ◽  
Author(s):  
Konstantinos Menelaou ◽  
David A. Schecter ◽  
M. K. Yau

Abstract Intense atmospheric vortices such as tropical cyclones experience various asymmetric instabilities during their life cycles. This study investigates how vortex properties and ambient conditions determine the relative importance of different mechanisms that can simultaneously influence the growth of an asymmetric perturbation. The focus is on three-dimensional disturbances of barotropic vortices with nonmonotonic radial distributions of potential vorticity. The primary modes of instability are examined for Rossby numbers between 10 and 100 and Froude numbers in the broad neighborhood of unity. This parameter regime is deemed appropriate for tropical cyclone perturbations with vertical length scales ranging from the depth of the vortex to moderately smaller scales. At relatively small Froude numbers, the main cause of instability inferred from analysis typically involves the interaction of vortex Rossby waves with each other and/or critical-layer potential vorticity perturbations. As the Froude number increases from its lower bound, the main cause of instability transitions to inertia–gravity wave radiation. In some cases, the transition occurs abruptly at a critical point where a mode whose growth is driven almost entirely by radiation suddenly becomes dominant. In other cases, the transition is gradual and less direct as the fastest-growing mode continuously changes its structure. Examination of the angular pseudomomentum budget helps quantify the impact of radiation. The radiation-driven instabilities examined herein are shown to be quite fast and potentially relevant to real-world tropical cyclones. Their sensitivities to parameterized moisture and outer vorticity skirts are briefly addressed.


2006 ◽  
Vol 63 (10) ◽  
pp. 2508-2528 ◽  
Author(s):  
Melinda S. Peng ◽  
Carolyn A. Reynolds

Abstract Singular vector (SV) sensitivity, calculated using the adjoint model of the U.S. Navy Operation Global Atmosphere Prediction System (NOGAPS), is used to study the dynamics associated with tropical cyclone evolution. For each model-predicted tropical cyclone, SVs are constructed that optimize perturbation energy within a 20° by 20° latitude/longitude box centered on the 48-h forecast position of the cyclone. The initial SVs indicate regions where the 2-day forecast of the storm is very sensitive to changes in the analysis. Composites of the SVs for straight-moving cyclones and non-straight-moving cyclones that occurred in the Northern Hemisphere during its summer season in 2003 are examined. For both groups, the initial-time SV sensitivity exhibits a maximum within an annulus approximately 500 km from the center of the storms, in the region where the potential vorticity gradient of the vortex first changes sign. In the azimuthal direction, the composite initial-time SV maximum for the straight-moving group is located in the rear right quadrant with respect to the storm motion. The composite based on the non-straight-moving cyclones does not have a preferred quadrant in the vicinity of the storms and has larger amplitude away from the cyclones compared with the straight-moving storms, indicating more environmental influence on these storms. For both groups, the maximum initial sensitive areas are collocated with regions of flow moving toward the storm. While the initial SV maximum is located where the potential vorticity gradient changes sign, the final SV maximum is located where the potential vorticity gradient is a maximum. Examinations of individual cases demonstrate how SV sensitivity can be used to identify specific environmental influences on the storms. The relationship between the SV sensitivity and the potential vorticity is discussed. The results support the utility of SVs in applications to phenomena beyond midlatitude baroclinic systems.


2016 ◽  
Vol 144 (3) ◽  
pp. 1179-1202 ◽  
Author(s):  
Marie-Dominique Leroux ◽  
Matthieu Plu ◽  
Frank Roux

Abstract This study is part of the efforts undertaken to resolve the “bad trough/good trough” issue for tropical cyclone (TC) intensity changes and to improve the prediction of these challenging events. Sensitivity experiments are run at 8-km resolution with vortex bogusing to extend the previous analysis of a real case of TC–trough interaction (Dora in 2007). The initial position and intensity of the TC are modified, leaving the trough unchanged to describe a realistic environment. Simulations are designed to analyze the sensitivity of TC prediction to both the variety of TC–trough configurations and the current uncertainty in model analysis of TC intensity and position. Results show that TC intensification under upper-level forcing is greater for stronger vortices. The timing and geometry of the interaction between the two cyclonic potential vorticity anomalies associated with the cutoff low and the TC also play a major role in storm intensification. The intensification rate increases when the TC (initially located 12° northwest of the trough) is displaced 1° closer. By allowing a gradual deformation and equatorward tilting of the trough, both scenarios foster an extended “inflow channel” of cyclonic vorticity at midlevels toward the vortex inner core. Conversely, unfavorable interaction is found for vortices displaced 3° or 4° east or northeast. Variations in environmental forcing relative to the reference simulation illustrate that the relationship between intensity change and the 850–200-hPa wind shear is not systematic and that the 200-hPa divergence, 335–350-K mean potential vorticity, or 200-hPa relative eddy momentum fluxes may be better predictors of TC intensification during TC–trough interactions.


2010 ◽  
Vol 138 (12) ◽  
pp. 4344-4361 ◽  
Author(s):  
David E. Kofron ◽  
Elizabeth A. Ritchie ◽  
J. Scott Tyo

Abstract As a tropical cyclone moves poleward and interacts with the midlatitude circulation, the question of whether it will undergo extratropical transition (ET) and, if it does, whether it will reintensify or dissipate, is a complex problem. Uncertainties include the tropical cyclone, the midlatitude circulation, the subtropical anticyclone, and the nonlinear interactions among these systems. A large part of the uncertainty is due to a lack of an understanding of when extratropical transition begins and how it progresses. In this study, absolute potential vorticity and isentropic, or Ertel’s, potential vorticity is examined for its ability to more consistently determine significant times (i.e., beginning or end) of the ET life cycle using the Navy Operational Global Assimilation and Prediction System gridded analyses. It is found that isentropic potential vorticity on the 330-K potential temperature isentropic level is a good discriminator for examining the extratropical transition of tropical cyclones. At this level, a consistent “ET time” is defined as when the TC-centered circular average of isentropic potential vorticity reaches a minimum value. All 82 tropical cyclones moving into the midlatitudes meet this criterion. The completion of extratropical transition for the reintensifying cases is defined as when the storm exceeds an isentropic potential vorticity threshold value of 1.6 PVU at the 330-K potential temperature isentropic level. The success rate of this threshold value for the completion of extratropical transition for the reintensification cases is found to be 94.3% with a 27.6% false-alarm rate.


Sign in / Sign up

Export Citation Format

Share Document